Self-Assembled Multifunctional Hybrids: Toward Developing High-Performance Graphene-Based Architectures for Energy Storage Devices
نویسندگان
چکیده
The prospect of developing multifunctional flexible three-dimensional (3D) architectures based on integrative chemistry for lightweight, foldable, yet robust, electronic components that can turn the many promises of graphene-based devices into reality is an exciting direction that has yet to be explored. Herein, inspired by nature, we demonstrate that through a simple, yet novel solvophobic self-assembly processing approach, nacre-mimicking, layer-by-layer grown, hybrid composite materials (consisting of graphene oxide, carbon nanotubes, and conducting polymers) can be made that can incorporate many of the exciting attributes of graphene into real world materials. The as-produced, self-assembled 3D multifunctional architectures were found to be flexible, yet mechanically robust and tough (Young's modulus in excess of 26.1 GPa, tensile strength of around 252 MPa, and toughness of 7.3 MJ m(-3)), and exhibited high native electrical conductivity (38700 S m(-1)) and unrivalled volumetric capacitance values (761 F cm(-3)) with excellent cyclability and rate performance.
منابع مشابه
Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage.
Surfactant or polymer directed self-assembly has been widely investigated to prepare nanostructured metal oxides, semiconductors, and polymers, but this approach is mostly limited to two-phase materials, organic/inorganic hybrids, and nanoparticle or polymer-based nanocomposites. Self-assembled nanostructures from more complex, multiscale, and multiphase building blocks have been investigated w...
متن کاملOrganic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures.
We introduce soft self-assembly of ultralarge liquid crystalline (LC) graphene oxide (GO) sheets in a wide range of organic solvents overcoming the practical limitations imposed on LC GO processing in water. This expands the number of known solvents which can support amphiphilic self-assembly to ethanol, acetone, tetrahydrofuran, N-dimethylformamide, N-cyclohexyl-2-pyrrolidone, and a number of ...
متن کاملThree-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors
Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical ...
متن کاملThree-Dimensional Porous Architectures of Carbon Nanotubes and Graphene Sheets for Energy Applications
*Correspondence: Peng Chen, Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive 637457, Singapore e-mail: [email protected] Owing to their extraordinary physicochemical, electrical, and mechanical properties, carbon nanotubes (CNTs) and graphene materials have been widely used to improve energy storage and conversion. I...
متن کاملStretchable and High-Performance Supercapacitors with Crumpled Graphene Papers
Fabrication of unconventional energy storage devices with high stretchability and performance is challenging, but critical to practical operations of fully power-independent stretchable electronics. While supercapacitors represent a promising candidate for unconventional energy-storage devices, existing stretchable supercapacitors are limited by their low stretchability, complicated fabrication...
متن کامل